Что характеризует величина составляющей тока в параллельной цепи
Перейти к содержимому

Что характеризует величина составляющей тока в параллельной цепи

  • автор:

Основные понятия и величины, характеризующие электрические цепи

Электрической цепью называется совокуп­ность устройств, предназначаемых для прохождения электрического тока, электромагнитные процессы в ко­торых могут быть описаны с помощью понятий напря­жения и тока. В общем случае электрическая цепь со­стоит из источников и приемников электрической энергии и промежуточных звеньев (проводов, аппаратов), связы­вающих источники с приемниками.

Источниками электрической энергии являются устройства (гальванические элементы, аккумуляторы, термоэлемен­ты, генераторы), в которых происхо­дит процесс преобразования химической, молекулярно-кинетической, тепловой, механической или другого вида энергии в электрическую.

Приемниками электрической энергии (нагрузкой), служат устройства (электрические лампы, электронагревательные приборы, электрические двига­тели, резисторы, конденсаторы, индуктивные катушки), в которых электрическая энер­гия превращается в световую, тепловую, механическую и др.

б) Величины:

Электрический ток и напряжение являются основны­ми величинами, характеризующими состояние электрических цепей.

Электрический ток в проводниках представляет явление упорядоченного движения электрических зарядов. Под терми­ном «ток» понимают также интенсивность или силу тока, измеряемую количеством электрического заряда q, прошед­шего через, поперечное сечение проводника в единицу вре­мени:

Следовательно, ток представляет собой скорость изменения заряда во времени. В СИ заряд выражается в кулонах (Кл), время—в секундах (с), ток — в амперах (А).

Ток как отношение двух скалярных величин является скалярной алгебраической величиной, знак которой зависит от направления движения зарядов одного знака, а именно условно принятого положительного заряда. Для однозначного опреде­ления знака тока за положительное направление достаточно произвольно выбрать одно из двух возможных направлений, которое отмечают стрелкой.

Если движение поло­жительного заряда происходит в направлении стрелки, а движение отрицательного заряда—навстречу ей, то ток поло­жителен. При изменении направления движения зарядов на противоположный ток будет отрицательным.

Задать однозначно ток в виде некоторой функции времени можно только после указания выбранного положительного направления тока. Поэтому перед началом анализа на всех участках цепи необходимо отметить положительные направления токов, выбор которых может быть произвольным.

Прохождение электрического тока или перенос зарядов в цепи связаны с преобра­зованием или потреблением энергии. Для определения энергии, затрачиваемой на перемещение заряда между двумя рассмат­риваемыми точками проводника, вводят новую величину— напряжение.

Напряжением называют количество энергии, затрачи­ваемой на перемещение единицы заряда из одной точки в другую: , где w —энергия.

При измерении энергии в джоулях (Дж) и заряда в кулонах (Кл) напряжение выражают в вольтах (В).

Напряжение как отношение двух скалярных величин также является скалярной алгебраической величиной. Для однознач­ного определения знака напряжения между двумя выводами рассматриваемого участка цепи одному из выводов условно приписывают положительную полярность, которую отмечают либо стрелкой, направленной от вывода, либо знаками «+»,«—

Напряжение положительно, если его поляр­ность совпадает с выбранной; это означает, что потенциал вывода со знаком «+», из которого выходит стрелка, выше потенциала второго вывода.

Перед началом анализа должны быть указаны выбранные положительные полярности напряжений — только при этом условии возможно однозначное определение напряжений.

Хотя условно положительную полярность напряжения можно выбирать произвольно, обычно удобно выбирать ее согласованной с выбранным положительным направлением тока, когда стрелки для тока и напряжения совпадают или знак «+» полярности напряжения находится в хвосте стрелки, обозначающей положительное направление тока. При согласо­ванном выборе полярности, очевидно, достаточно ограничиться указанием только одной стрелки положительного направления тока.

Если возникает необходимость выбора положительной по­лярности напряжения, не согласованной с положительным направлением тока, то приходится указывать две встречно направленные стрелки: для тока и для напряжения. Это не очень удобно. Поэтому для обозначения условно положитель­ной полярности будем применять знаки «+.», «—» у выводов участка цепи.

Из определения напряжения (1) получаем выражение энергии, затраченной на перемещение заряда q на участке цепи с напряжением и к моменту времени t.

. Здесь суммируются все энергетические процессы при действии напряжения, начиная от t = — ∞, где энергия прини­мается равной нулю, до рассматриваемого момента. Диффе­ренцирование этого равенства по времени дает выражение скорости изменения энергии во времени, т. е. мощности, выражаемой в ваттах:

Мощность в электрической цепи, равная произведению напряжения на ток, также является алгебраической величиной. Знак ее определяется знаками напряжения и тока: при совпаде­нии этих знаков мощность положительна, что соответствует потреблению энергии в рассматриваемом участке цепи; при несовпадении знаков напряжения и тока мощность отрица­тельна, что означает отдачу ее из участка цепи (такой участок является источником энергии).

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:

Ток и напряжение при параллельном, последовательном и смешанном соединении проводников

Ток и напряжение при параллельном, последовательном и смешанном соединении проводниковРеальные электрические цепи чаще всего включают в себя не один проводник, а несколько проводников, как-то соединенных друг с другом. В самом простом виде электрическая цепь имеет только «вход» и «выход», то есть два вывода для соединения с другими проводниками, через которые заряд (ток) имеет возможность втекать в цепь и из цепи вытекать. При установившемся токе в цепи, значения величин токов на входе и на выходе будут одинаковы.

Если взглянуть на электрическую цепь, включающую в себя несколько разных проводников, и рассмотреть на ней пару точек (вход и выход), то в принципе остальная часть цепи может быть рассмотрена как одиночный резистор (по ее эквивалентному сопротивлению).

При таком подходе говорят, что если ток I – это ток в цепи, а напряжение U – напряжение на выводах, то есть разность электрических потенциалов между точками «входа» и «выхода», то тогда отношение U/I можно рассмотреть как величину эквивалентного сопротивления R цепи целиком.

Если закон Ома выполняется, то эквивалентное сопротивление можно вычислить довольно легко.

Ток и напряжение при последовательном соединении проводников

Ток в последовательной цепи

В простейшем случае, когда два и более проводников объединены друг с другом в последовательную цепь, ток в каждом проводнике окажется одним и тем же, а напряжение между «выходом» и «входом», то есть на выводах всей цепи, будет равным сумме напряжений на составляющих цепь резисторах. И поскольку закон Ома справедлив для любого из резисторов, то можно записать:

Напряжение при последовательном соединении проводников

Итак, для последовательного соединения проводников характерны следующие закономерности:

Для нахождения общего сопротивления цепи, сопротивления составляющих цепь проводников складываются;

Ток через цепь равен току через любой из проводников, образующих цепь;

Напряжение на выводах цепи равно сумме напряжений на каждом из проводников, образующих цепь.

Ток и напряжение при параллельном соединении проводников

Ток при параллельном соединении проводников

При параллельном соединении нескольких проводников друг с другом, напряжение на выводах такой цепи — это напряжение на каждом из проводников, составляющих цепь.

Напряжения на всех проводниках равны между собой и равны напряжению приложенному (U). Ток через всю цепь — на «входе» и «выходе» — равен сумме токов в каждой из ветвей цепи, параллельно объединенных и составляющих данную цепь. Зная, что I = U/R, получаем, что:

Ток и напряжение при параллельном соединении проводников

Итак, для параллельного соединения проводников характерны следующие закономерности:

Для нахождения общего сопротивления цепи — складываются обратные величины сопротивлений составляющих цепь проводников;

Ток через цепь равен сумме токов через каждый из проводников, образующих цепь;

Напряжение на выводах цепи равно напряжению на любом из проводников, образующих цепь.

Эквивалентные схемы простых и сложных (комбинированных) цепей

Эквивалентные схемы простых и сложных (комбинированных) цепей

В большинстве случаев схемы цепей, являясь комбинированным соединением проводников, поддаются пошаговому упрощению.

Группы соединенных последовательно и параллельно частей цепи, заменяют эквивалентными сопротивлениями по приведенному выше принципу, шаг за шагом вычисляя эквивалентные сопротивления кусочков, затем приводя их к одному эквивалентному значению сопротивления всей цепи.

И если сначала схема выглядит довольно запутанной, то будучи упрощенной шаг за шагом, она может быть разбита на меньшие цепочки из последовательно и параллельно соединенных проводников, и так в конце концов сильно упрощена.

Схема моста

Между тем, не все схемы подаются упрощению таким простым путем. Простая с виду схема «моста» из проводников не может быть исследована таким образом. Здесь нужно применять уже несколько правил:

Для каждого резистора выполняется закон Ома;

В любом узле, то есть в точке схождения двух и более токов, алгебраическая сумма токов равна нулю: сумма токов втекающих в узел, равна сумме токов вытекающих из узла (первое правило Кирхгофа);

Сумма напряжений на участках цепи при обходе по любому пути от «входа» до «выхода» равна приложенному к цепи напряжению (второе правило Кирхгофа).

Мостовое соединение проводников

Мостовое соединение проводников

Дабы рассмотреть пример использования приведенных выше правил, рассчитаем цепь, собранную из проводников, объединенных в схему моста. Чтобы вычисления получились не слишком сложными, примем, что некоторые из сопротивлений проводников равны между собой.

Обозначим направления токов I, I1, I2, I3 на пути от «входа» в цепь — к «выходу» из цепи. Видно, что схема симметрична, поэтому токи через одинаковые резисторы одинаковы, поэтому обозначим их одинаковыми символами. В самом деле, если поменять у цепи местами «вход» и «выход», то схема будет неотличима от исходной.

Для каждого узла можно записать уравнения токов, исходя из того, что сумма токов втекающих в узел равна сумме токов вытекающих из узла (закон сохранения электрического заряда), получится два уравнения:

Уравнение токов для узла

Следующим шагом записывают уравнения сумм напряжений для отдельных участков цепи при обходе цепи от входя к выходу различными путями. Так как схема является в данном примере симметричной, то достаточно двух уравнений:

Уравнения сумм напряжений для отдельных участков цепи

В процессе решения системы линейных уравнений, получается формула для нахождения величины тока I между зажимами «входным» и «выходным», исходя из заданного приложенного к цепи напряжения U и сопротивлений проводников:

Формула для нахождения величины тока между зажимами

А для общего эквивалентного сопротивления цепи, исходя из того, что R = U/I, следует формула:

Общее эквивалентное сопротивление цепи

Можно даже проверить правильность решения, например приведя к предельным и к частным случаям величины сопротивлений:

Теперь вы знаете, как находить ток и напряжение при параллельном, последовательном, смешанном, и даже при мостовом соединении проводников, применяя закон Ома и правила Кирхгофа. Эти принципы очень просты, и даже самая сложная электрическая цепь с их помощью в конце концов приводится к элементарному виду путем нескольких несложных математических операций.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Последовательное и параллельное соединение проводников

Проводники в электрических цепях могут соединяться как последовательным, так и параллельным способами.

В условиях последовательного соединения проводников (рис. 1 . 9 . 1 ) сила тока во всех проводниках одинакова:

Рисунок 1 . 9 . 1 . Последовательное соединение проводников.

Опираясь на закон Ома, можно заявить, что напряжения U 1 и U 2 на проводниках равняются следующим выражениям:

U 1 = I R 1 , U 2 = I R 2 .

Общее напряжение U на обоих проводниках эквивалентно сумме напряжений U 1 и U 2 :

U = U 1 + U 2 = I ( R 1 + R 2 ) = I R ,

где R является электрическим сопротивлением всей цепи.

Из этого следует, что общее сопротивление R равняется сумме сопротивлений на входящих в данную цепь отдельных проводников:

Данный результат применим для любого количества последовательно соединенных проводников.

Параллельное соединение проводников

В условиях параллельного соединения (рис. 1 . 9 . 2 ) напряжения U 1 и U 2 на обоих проводниках эквивалентны друг другу, из чего следует:

Совокупность существующих в обоих проводниках токов I 1 + I 2 равняется значению тока в неразветвленной цепи, то есть:

Данный результат исходит из того, что заряды не могут копиться в точках разветвления, то есть в узлах A и B , цепи постоянного тока.

Так, например, узлу A за время Δ t сообщается заряд I Δ t , а уходит из узла за то же время заряд I 1 Δ t + I 2 Δ t . Таким образом, подтверждается выражение I = I 1 + I 2 .

Рисунок 1 . 9 . 2 . Параллельное соединение проводников.

Опираясь на закон Ома, запишем для каждой ветви:

I 1 = U R 1 , I 2 = U R 2 , I = U R ,

где R является электрическим сопротивлением всей цепи, получим

1 R = 1 R 1 + 1 R 2

В условиях параллельного соединения проводников обратная общему сопротивлению цепи величина, равняется сумме величин, обратных сопротивлениям параллельно включенных проводников.

Полученный вывод может быть применим для любого количества включенных параллельно проводников.

Применение формул для расчета сопротивления сложной цепи

Формулы для последовательного и параллельного соединений проводников дают возможность во многих случаях рассчитывать сопротивление сложной цепи, которая состоит из многих резисторов. На рис. 1 . 9 . 3 проиллюстрирована подобная сложная цепь и указана последовательность необходимых для расчета вычислений.

Рисунок 1 . 9 . 3 . Расчет сопротивления сложной цепи. Сопротивления всех проводников указаны в омах ( О м ).

Стоит акцентировать внимание на том факте, что далеко не каждая сложная цепь, состоящая из проводников с разными сопротивлениями, может быть рассчитана с использованием формул для последовательного и параллельного соединений. На рис. 1 . 9 . 4 изображена электрическая цепь, которую рассчитать данным методом не получится.

Рисунок 1 . 9 . 4 . Пример электрической цепи, не сводящейся к комбинации последовательно и параллельно соединенных проводников.

Аналогичные иллюстрированной на рисунке 1 . 9 . 4 цепи, так же, как и цепи с разветвлениями, содержащие более одного источника, можно рассчитать, используя правила Кирхгофа.

Последовательное и параллельное соединение

Последовательное и параллельное соединение очень широко используется в электронике и электротехнике и порой даже необходимо для правильной работы того или иного узла электроники. И начнем, пожалуй, с самых простых компонентов радиоэлектронных цепей — проводников.

Для начала давайте вспомним, что такое проводник? Проводник — это вещество или какой-либо материал, который отлично проводит электрический ток. Если какой-либо проводник отлично проводит электрический ток, то он в любом случае обладает каким-либо сопротивлением. Сопротивление проводника мы находим по формуле:

формула сопротивления проводника

ρ – это удельное сопротивление, Ом × м

R – сопротивление проводника, Ом

S – площадь поперечного сечения, м 2

l – длина проводника, м

Более подробно об этом я писал здесь.

Следовательно, любой проводник представляет из себя резистор с каким-либо сопротивлением. Значит, любой проводник можно нарисовать так.

резистор

Последовательное соединение проводников

Сопротивление при последовательном соединении проводников

Последовательное соединение проводников — это когда к одному проводнику мы соединяем другой проводник и так по цепочке. Это и есть последовательное соединение проводников. Их можно соединять с друг другом сколь угодно много.

последовательное соединение проводников

Чему же будет равняться их общее сопротивление? Оказывается, все просто. Оно будет равняться сумме всех сопротивлений проводников в этой цепи.

общее сопротивление при последовательном соединении

Получается, можно записать, что

формула при последовательном соединении проводников

Пример

У нас есть 3 проводника, которые соединены последовательно. Сопротивление первого 3 Ома, второго 5 Ом, третьего 2 Ома. Найти их общее сопротивление в цепи.

Решение

То есть, как вы видите, цепочку из 3 резисторов мы просто заменили на один резистор RAB .

общее сопротивление

показать на реальном примере с помощью мультиметра
Видео где подробно расписывается про эти соединения:

Сила тока через последовательное соединение проводников

Что будет, если мы подадим напряжение на концы такого резистора? Через него сражу же побежит электрический ток, сила которого будет вычисляться по закону Ома I=U/R.

замкнутая цепь

Получается, если через резистор RAB течет какой-то определенный ток, следовательно, если разложить наш резистор на составляющие R1 , R2 , R3 , то получится, что через них течет та же самая сила тока, которая текла через резистор RAB .

сила тока через последовательное соединение проводников

Получается, что при последовательном соединении проводников сила тока, которая течет через каждый проводник одинакова. То есть через резистор R1 течет такая же сила тока, как и через резистор R2 и такая же сила тока течет через резистор R3 .

Напряжение при последовательном соединении проводников

Давайте еще раз рассмотрим цепь с тремя резисторами

цепь с тремя резисторами

Как мы уже знаем, при последовательном соединении через каждый резистор проходит одна и та же сила тока. Но вот что будет с напряжением на каждом резисторе и как его найти?

Оказывается, все довольно таки просто. Для этого надо снова вспомнить закон дядюшки Ома и просто вычислить напряжение на любом резисторе. Давайте так и сделаем.

Пусть у нас будет цепь с такими параметрами.

задача на закон ома

Мы теперь знаем, что сила тока в такой цепи будет везде одинакова. Но какой ее номинал? Вот в чем загвоздка. Для начала нам надо привести эту цепь к такому виду.

общее сопротивление

Получается, что в данном случае RAB =R1 + R2 + R3 = 2+3+5=10 Ом. Отсюда уже находим силу тока по закону Ома I=U/R=10/10=1 Ампер.

Половина дела сделано. Теперь осталось узнать, какое напряжение падает на каждом резисторе. То есть нам надо найти значения UR1 , UR2 , UR3 . Но как это сделать?

падение напряжения на резисторе

Да все также, через закон Ома. Мы знаем, что через каждый резистор проходит сила тока 1 Ампер, мы уже вычислили это значение. Закон ома гласит I=U/R , отсюда получаем, что U=IR.

Теперь начинается самое интересное. Если сложить все падения напряжений на резисторах, то можно получить… напряжение источника! Он у нас равен 10 Вольт.

Мы получили самый простой делитель напряжения.

Вывод: сумма падений напряжений при последовательном соединении равняется напряжению питания.

Параллельное соединение проводников

Параллельное соединение проводников выглядит вот так.

параллельное соединение проводников

Ну что, думаю, начнем с сопротивления.

Сопротивление при параллельном соединении проводников

Давайте пометим клеммы как А и В

В этом случае общее сопротивление RAB будет находиться по формуле

Если же мы имеем только два параллельно соединенных проводника

параллельное соединение двух резисторов

То в этом случае можно упростить длинную неудобную формулу и она примет вид такой вид.

сопротивление двух резисторов, включенных параллельно формула

Напряжение при параллельном соединении проводников

Здесь, думаю ничего гадать не надо. Так как все проводники соединяются параллельно, то и напряжение у всех будет одинаково.

резисторы в параллель

Получается, что напряжение на R1 будет такое же как и на R2, как и на R3, так и на Rn

напряжение при параллельном соединении проводников

Сила тока при параллельном соединении проводников

Если с напряжением все понятно, то с силой тока могут быть небольшие затруднения. Как вы помните, при последовательном соединении сила тока через каждый проводник была одинакова. Здесь же совсем наоборот. Через каждый проводник будет течь своя сила тока. Как же ее вычислить? Придется опять прибегать к Закону Ома.

Чтобы опять же было нам проще, давайте рассмотрим все это дело на реальном примере. На рисунке ниже видим параллельное соединение трех резисторов, подключенных к источнику питания U.

делитель тока

Как мы уже знаем, на каждом резисторе одно и то же напряжение U. Но будет ли сила тока такая же, как и во всей цепи? Нет. Поэтому для каждого резистора мы должны вычислить свою силу тока по закону Ома I=U/R. В результате получаем, что

Если бы у нас еще были резисторы, соединенные параллельно, то для них

В этом случае, сила тока в цепи будет равна:

формула делителя тока

Задача

Вычислить силу тока через каждый резистор и силу тока в цепи, если известно напряжение источника питания и номиналы резисторов.

задача на делитель тока

Решение

Воспользуемся формулами, которые приводили выше.

Если бы у нас еще были резисторы, соединенные параллельно, то для них

Далее, воспользуемся формулой

формула делителя тока

чтобы найти силу тока, которая течет в цепи

2-ой способ найти I

Чтобы найти Rобщее мы должны воспользоваться формулой

Последовательное и параллельное соединение

Чтобы не париться с вычислениями, есть онлайн калькуляторы. Вот один из них — «калькулятор резисторов«. Я за вас уже все вычислил. Параллельное соединение 3-ех резисторов номиналом в 2, 5, и 10 Ом равняется 1,25 Ом, то есть Rобщее = 1,25 Ом.

I=U/Rобщее = 10/1,25=8 Ампер.

Параллельное соединение резисторов в электронике также называется делителем тока, так как резисторы делят ток между собой.

Ну а вот вам бонусом объяснение, что такое последовательное и параллельное соединение проводников от лучшего преподавателя России.

Подробное объяснение на видео:

Прикольный набор радиолюбителя по ссылке <<<

Похожие статьи по теме «последовательное и параллельное соединение»

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *